OR operator (Inclusive OR operator) - translation to ισπανικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

OR operator (Inclusive OR operator) - translation to ισπανικά

LOGICAL CONNECTIVE OR
Disjunction; Logical or; Or (logic); Disjunction (logic); Inclusive or; Logical OR; Inclusive disjunction; ⋁; Nonexclusive disjunction; Non-exclusive disjunction; Or symbol; ⋎; ⟇; ⟏; Boolean OR; Logical sum; Or operator; Parallel OR; Parallel or; Inclusive OR; Inclusive-or; Inclusive-OR; OR (logic)
  • OR [[logic gate]]
  • Venn diagram of <math>\scriptstyle A \lor B \lor C</math>

OR operator (Inclusive OR operator)      
Operador lógico "O", operador inclusivo "O"
disjunction         
(n.) = separación
Ex: Digital technology has ushered us into a ceaseless spiral of change which represents, not so much an evolution, but a formidable disjunction with the analog world.
logical sum         
(n.) = suma lógica
Ex: Logical sum, symbolized by A OR B, or A + B.

Ορισμός

trato hecho
term. comp.
Comercio. Fórmula familiar con que se da por definitivo un convenio o acuerdo.

Βικιπαίδεια

Logical disjunction

In logic, disjunction is a logical connective typically notated as {\displaystyle \lor } and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S W {\displaystyle S\lor W} , assuming that S {\displaystyle S} abbreviates "it is sunny" and W {\displaystyle W} abbreviates "it is warm".

In classical logic, disjunction is given a truth functional semantics according to which a formula ϕ ψ {\displaystyle \phi \lor \psi } is true unless both ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages.